![]()  | 
Maths Quiz for Class 8 Factorisation  | 
In this post, we are providing 20 online maths quiz
questions for class 8 factorisation. Online maths quiz will take around 20
minutes to complete it.
Question 1: Factorise 4x + 12y. 
        A) 4(3x + y) 
        B) 2(x + 3y) 
        C) 4(x + 3y) 
        D) (x + 3y) 
        Explanation: 4x + 12y = 4(x + 3y) 
 
        Question 2: Factorise
8xy + 6x2y2.
        A) 2xy(4 + 3xy) 
        B) 2xy(4 + xy) 
        C) 2xy(3 + 4xy) 
        D) xy(4 + 3xy) 
        Explanation: 8xy
+ 6x2y2 = 2xy(4 + 3xy) 
 
        Question 3: Factorise a2bc + ab2c + abc2. 
        A) abc(a + b + c) 
        B) ab(a + b + c) 
        C) ac(a + b + c) 
        D) bc(a + b + c) 
        Explanation: a2bc + ab2c + abc2 = abc(a + b + c) 
        Question 4: Factorise 15x2
+ 20xy2 + 10z2. 
        A) 5(3x
+ 4y2 + 2z2)
        B) 5x(3x
+ 4y2 + 2z2)
        C) 5x(3x
+ 4y2 + 2z)
        D) 5x(3x
+ 4y + 2z2)
        Explanation: 15x2
+ 20xy2 + 10xz2 = 5x(3x + 4y2
+ 2z2)
        Question 5: Factorise 4ab + 6b + 6a + 9 by regrouping the terms. 
        A) (2a + 3) (2b + 2) 
        B) (2a + 3) (2b + 3) 
        C) (2a + 2) (2b + 3) 
        D) (2a + 3) (4b + 3) 
        Explanation: 4ab + 6b + 6a + 9 = (4ab + 6b) + (6a + 9) = 2b(2a + 3) + 3(2a + 3) = (2a + 3) (2b + 3) 
        Question 6: Factorise x2 + x3
+ x4 + x5 using regrouping. 
        A) (1
+ x) (1 + x2)
        B) x (1
+ x) (1 + x2)
        C) x2
(1 + x) (1 + x2)
        D) x2
(1 + x) (1 + x3)
        Explanation: x2 + x3
+ x4 + x5 = (x2 + x3)
+ (x4 + x5) = x2(1 + x) +
x4(1 + x) = (1 + x) (x2 + x4)
= (1 + x) x2 (1 + x2) = x2 (1
+ x) (1 + x2)
        Question 7: Factorise 12a2b
+ 16ab2. 
        A) ab(3a + 4b) 
        B) 4ab(3a + 4b) 
        C) 4ab(4a + 4b) 
        D) 4ab(3a + 16b) 
        Explanation: 12a2b
+ 16ab2 = 4ab(3a + 4b) 
        Question 8: Factorise 12xy + 8yz + 15px + 10zp using regrouping. 
        A) (3x + 4z) (4y + 5p) 
        B) (3x + 2z) (3y + 5p) 
        C) (3x + 2z) (4y + 3p) 
        D) (3x + 2z) (4y + 5p) 
        Explanation: 12xy + 8yz + 15px + 10zp = (12xy + 8yz) + (15px + 10zp) = 4y(3x + 2z) + 5p(3x + 2z) = (3x + 2z) (4y + 5p) 
        Question 9: Factorise 9x2
+ 24xy + 16y2 using the identity (a +
b)2 = a2 + 2ab
+ b2.
        A) (3x + 4y)2
        B) (3x + y)2
        C) (x + 4y)2
        D) (3x + 4y + 6)2
        Explanation: 9x2
+ 24xy + 16y2 = (3x)2 + 2 × 3x × 4y
+ (4y)2 = (3x + 4y)2
        Question 10: Factorise 25x2
– 70xy + 49y2 using the identity (a –
b)2 = a2 – 2ab
+ b2.
        A) (x – 7y)2
        B) (5x – y)2
        C) (5x – 7y)2
        D) (5x – 7y + 10)2
        Explanation: 25x2 – 70xy + 49y2 = (5x)2 – 2 × 5x × 7y + (7y)2 = (5x – 7y)2
        Question 11: Factorise 81p2 – 256q2 using a2 – b2 = (a + b) (a – b ). 
        A) (9p + 16q) (9p + 16q) 
        B) (9p + 16q) (9p – 16q) 
        C) (9p – 16q) (9p – 16q) 
        D) (9p + 16q) (p – q) 
        Explanation: 81p2 – 256q2 = (9p)2 – (16q)2 = (9p + 16q) (9p – 16q) 
        Question 12: Factorise 32p4
– 50q4. 
        A) 2(4p2
+ 5q2) (4p2 + 5q2)
        B) 2(4p2
+ 5q2) (4p2 – 5q2)
        C) (4p2
+ 5q2) (4p2 – 5q2)
        D) 2(4p2
– 5q2) (4p2 – 5q2)
        Explanation: 32p4
– 50q4 = 2(16p4 – 25q4) =
2[(4p2)2 – (5q2)2] =
2(4p2 + 5q2) (4p2 – 5q2)
        Question 13: Factorise 16x4
– 81y4. 
        A) (4x2
+ 9y2) (2x + 3y) (2x – 3y)
        B) (4x2
+ 9y2) (2x + 3y) (2x + 3y)
        C) (4x2
+ 9y2) (2x – 3y) (2x – 3y)
        D) (4x2
+ 9y2) (4x + 9y) (4x – 9y)
        Explanation: 16x4
– 81y4 = (4x2)2 – (9y2)2
= (4x2 + 9y2) (4x2 – 9y2)
= (4x2 + 9y2) [(2x)2 – (3y)2]
= (4x2 + 9y2) (2x + 3y) (2x
– 3y)
        Question 14: Factorise x2 + 7x + 12 by splitting the middle term. 
        A) (x + 4) (x – 3) 
        B) (x + 3) (x + 3) 
        C) (x + 4) (x + 4) 
        D) (x + 4) (x + 3) 
        Explanation: x2 + 7x + 12 = x2 + (4 + 3)x + 12 = x2 + 4x + 3x + 12 = x(x + 4) + 3(x + 4) = (x + 4) (x + 3) 
        Question 15: Factorise x2 + 4x – 60 by splitting the middle term. 
        A) (x – 10) (x + 6) 
        B) (x – 10) (x – 6) 
        C) (x + 10) (x – 6) 
        D) (x + 10) (x + 6) 
        Explanation: x2 + 4x – 60 = x2 + (10 – 6)x – 60 = x2 + 10x – 6x – 60 = x(x + 10) – 6(x + 10) = (x + 10) (x – 6) 
        Question 16: Factorise 7x2 – 5x – 12 by splitting the middle term. 
        A) (x + 1) (7x + 12) 
        B) (x + 1) (7x – 12) 
        C) (x – 1) (7x – 12) 
        D) (x – 1) (7x + 12) 
        Explanation: Here, –12 × 7 = –84 and –12 + 7 = –5. Therefore, 7x2 – 5x – 12 = 7x2 + (7 – 12)x – 12 = 7x2 + 7x – 12x – 12 = 7x(x + 1) – 12(x + 1) = (x + 1) (7x – 12) 
        Question 17: 42x2y2z2 ÷ 6xyz = __________ 
        A) 7xyz 
        B) 7x2yz 
        C) 7xy2z 
        D) 7xyz2
        Explanation: 42x2y2z2 ÷ 6xyz = 7x2-1y2-1z2-1 = 7xyz 
        Question 18: (8x3 + 6x2 + 2x) ÷ 2x = ____________
        A) 4x2 + 3x + 2 
        B) 4x2 + 6x + 1 
        C) 4x2 + 3x + 1
        D) 4x2 + 3x2 + 1 
        Explanation: (8x3 + 6x2 + 2x) ÷ 2x = 2x(4x2 + 3x + 1) ÷ 2x = 4x2 + 3x + 1 
        Question 19: Divide (x2 + 9x + 20) by (x + 4). 
        A) x + 4 
        B) x + 5 
        C) x + 3 
        D) x + 2 
        Explanation: Let us factorise x2 + 9x + 20 first. x2 + 9x + 20 = x2 + 5x + 4x + 20 = x(x + 5) + 4(x + 5) = (x + 4) (x + 5). Now, (x2 + 9x + 20) ÷ (x + 4) = (x + 4) (x + 5) ÷ (x + 4) = x + 5 
        Question 20: Divide (3x2 – 13x + 12) by (x – 3). 
        A) x – 4 
        B) 3x + 4 
        C) 3x – 4 
        D) x + 4 
        Explanation: Let us factorise 3x2 – 13x + 12 first. 3x2 – 13x + 12 = 3x2 – 9x – 4x + 12 = 3x(x – 3) – 4(x – 3) = (x – 3) (3x – 4). Now, (3x2 – 13x + 12) ÷ (x – 3) = (x – 3) (3x – 4) ÷ (x – 3) = 3x – 4 
        Report Card
Total Questions Attempted: 0
Correct Answers: 0
Wrong Answers: 0
Percentage: 0%
